Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

Identifieur interne : 000C56 ( Main/Exploration ); précédent : 000C55; suivant : 000C57

Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

Auteurs : Jennifer J. Tate [États-Unis] ; Rajendra Rai [États-Unis] ; Terrance G. Cooper [États-Unis]

Source :

RBID : pubmed:25527290

Descripteurs français

English descriptors

Abstract

A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation.

DOI: 10.1534/genetics.114.173831
PubMed: 25527290
PubMed Central: PMC4317654


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:regionArea>
<wicri:noRegion>Memphis</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25527290</idno>
<idno type="pmid">25527290</idno>
<idno type="doi">10.1534/genetics.114.173831</idno>
<idno type="pmc">PMC4317654</idno>
<idno type="wicri:Area/Main/Corpus">000D30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D30</idno>
<idno type="wicri:Area/Main/Curation">000D30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D30</idno>
<idno type="wicri:Area/Main/Exploration">000D30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis</wicri:regionArea>
<wicri:noRegion>Memphis</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus (MeSH)</term>
<term>Epistasis, Genetic (MeSH)</term>
<term>GATA Transcription Factors (metabolism)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Genes, Reporter (MeSH)</term>
<term>Methionine Sulfoximine (pharmacology)</term>
<term>Mutation (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>RNA, Transfer, Gln (genetics)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN de transfert de la glutamine (génétique)</term>
<term>Azote (métabolisme)</term>
<term>Expression des gènes (MeSH)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs de transcription GATA (métabolisme)</term>
<term>Gènes rapporteurs (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Méthionine sulfoximine (pharmacologie)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transport des protéines (MeSH)</term>
<term>Transport nucléaire actif (MeSH)</term>
<term>Épistasie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Transfer, Gln</term>
<term>Recombinant Fusion Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>GATA Transcription Factors</term>
<term>Nitrogen</term>
<term>Recombinant Fusion Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN de transfert de la glutamine</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Facteurs de transcription</term>
<term>Facteurs de transcription GATA</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Méthionine sulfoximine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Methionine Sulfoximine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Epistasis, Genetic</term>
<term>Gene Expression</term>
<term>Genes, Reporter</term>
<term>Mutation</term>
<term>Phenotype</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Expression des gènes</term>
<term>Gènes rapporteurs</term>
<term>Mutation</term>
<term>Phénotype</term>
<term>Transport des protéines</term>
<term>Transport nucléaire actif</term>
<term>Épistasie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25527290</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>199</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>455-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.114.173831</ELocationID>
<Abstract>
<AbstractText>A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. </AbstractText>
<CopyrightInformation>Copyright © 2015 by the Genetics Society of America.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tate</LastName>
<ForeName>Jennifer J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rai</LastName>
<ForeName>Rajendra</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>Terrance G</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163 tcooper@uthsc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM035642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-35642</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C096100">GAT1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050980">GATA Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C071664">GLN3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012351">RNA, Transfer, Gln</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1982-67-8</RegistryNumber>
<NameOfSubstance UI="D008717">Methionine Sulfoximine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004843" MajorTopicYN="N">Epistasis, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050980" MajorTopicYN="N">GATA Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008717" MajorTopicYN="N">Methionine Sulfoximine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012351" MajorTopicYN="N">RNA, Transfer, Gln</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gat1</Keyword>
<Keyword MajorTopicYN="N">Gln3</Keyword>
<Keyword MajorTopicYN="N">glutamine tRNA</Keyword>
<Keyword MajorTopicYN="N">nitrogen starvation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25527290</ArticleId>
<ArticleId IdType="pii">genetics.114.173831</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.114.173831</ArticleId>
<ArticleId IdType="pmc">PMC4317654</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 4;289(27):18999-9018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Jun;182(11):3158-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10809695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 17;275(46):35727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10940301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):25359-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Oct 4;277(40):37559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 9;278(19):16878-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12624103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Aug;12(2):401-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14536080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 30;279(18):19294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Oct;5(1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Mikrobiol. 1970;70(2):89-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4914043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1974;101(1):45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4374149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Aug;135(2):490-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">355230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1978 Oct;136(1):234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">361691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Dec 20;192(4):725-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3295253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Oct;10(10):5087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2204806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 May;11(5):2852-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2017180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Mar 20;68(6):1077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Nov;174(21):6831-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 23;284(4):2522-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Aug;21(4):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19577915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jun 4;285(23):17880-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20378536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Dec 30;286(52):44897-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22039046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Dec 5;20(12):2151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Jan;175(1):64-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8416910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 Feb;175(4):941-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8432717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Aug;9(8):835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8212891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Aug;178(15):4734-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Oct;16(10):5876-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8816501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1997 Feb 20;253(5):568-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9065690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Apr;181(8):2472-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 30;280(52):42528-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16253991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37980-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2008 Dec;8(8):1223-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 1999 Aug;12(1):35-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Nov;181(22):7052-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Jan;87(2):284-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23146061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 25;288(4):2789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 20;288(38):27243-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2014 Jun;3(3):271-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24644271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Tate, Jennifer J" sort="Tate, Jennifer J" uniqKey="Tate J" first="Jennifer J" last="Tate">Jennifer J. Tate</name>
</region>
<name sortKey="Cooper, Terrance G" sort="Cooper, Terrance G" uniqKey="Cooper T" first="Terrance G" last="Cooper">Terrance G. Cooper</name>
<name sortKey="Rai, Rajendra" sort="Rai, Rajendra" uniqKey="Rai R" first="Rajendra" last="Rai">Rajendra Rai</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25527290
   |texte=   Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25527290" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020